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A B S T R A C T   

Accurate simulation of crop water use (evapotranspiration, ET) can help crop growth models to assess the likely 
effects of climate change on future crop productivity, as well as being an aid for irrigation scheduling for today’s 
growers. To determine how well maize (Zea mays L.) growth models can simulate ET, an initial inter-comparison 
study was conducted in 2019 under the umbrella of AgMIP (Agricultural Model Inter-Comparison and 
Improvement Project). Herein, we present results of a second inter-comparison study of 41 maize models that 
was conducted using more comprehensive datasets from two additional sites - Mead, Nebraska, USA and 
Bushland, Texas, USA. There were 20 treatment-years with varying irrigation levels over multiple seasons at both 
sites. ET was measured using eddy covariance at Mead and using large weighing lysimeters at Bushland. A wide 
range in ET rates was simulated among the models, yet several generally were able to simulate ET rates 
adequately. The ensemble median values were generally close to the observations, but a few of the models 
sometimes performed better than the median. Many of the models that did well at simulating ET for the Mead site 
did poorly for drier, windy days at the Bushland site, suggesting they need to improve how they handle humidity 
and wind. Additional variability came from the approaches used to simulate soil water evaporation. Fortunately, 
several models were identified that did well at simulating soil water evaporation, canopy transpiration, biomass 
accumulation, and grain yield. These models were older and have been widely used, which suggests that a larger 
number of users have tested these models over a wider range of conditions leading to their improvement. These 
revelations of the better approaches are leading to model improvements and more accurate simulations of ET.   

1. Introduction 

Crop growth models are a useful management aid for today’s 
farmers, as well as being a tool to forecast the likely effects of climate 
change on future agricultural productivity and irrigation water re-
quirements. For both tasks they need to be accurate. Therefore, in a 
major effort to improve their accuracy and reliability, modeling groups 
within the Agricultural Model Inter-comparison and Improvement 
Project (AgMIP; https://agmip.org/) have been inter-comparing multi-
ple models against each other and against field datasets with varying 
CO2, temperature, nitrogen fertilizer, and water supply [wheat (Triticum 
aestivum L.; Asseng et al., 2013, 2015; Cammarano et al., 2016; Liu et al., 
2016; Maiorano et al., 2017; Wang et al., 2017), maize (Zea mays L.; 
Bassu et al., 2014; Durand et al., 2018; Kimball et al., 2019), rice (Oryza 
sativa L.; Li et al., 2015; Hasegawa et al., 2017), and potato (Solanum 
tuberosum L.; Fleisher et al., 2017)]. 

As discussed by Kimball et al. (2019), only a few comparisons among 
methods or models to simulate ET have been done previously. Sau et al. 
(2004) evaluated several ET options with the CROPGRO Faba bean 
(Vicia faba L.) model, by careful comparison to soil water balance, and 
found that the FAO-56 option (Allen et al., 1998) had a root mean square 
error (RMSE) that was 20% smaller than the Priestley-Taylor option 
(Priestley and Taylor, 1972) and 48% smaller than the FAO-24 option 
(Doorenbos and Pruitt, 1985). In an inter-comparison of water use 
among 16 wheat models at four sites around the world, Cammarano 
et al. (2016) found the coefficient of variation was only 22.5% among 
models and sites. In contrast, in an inter-comparison among 23 maize 
models, Bassu et al. (2014) found a very large range of simulated values 

of ET among the models, including − 10 to +30% variations in the ET 
response to doubled CO2 concentration (720 µmol/mol). However, there 
were no observations of ET or water use in the dataset chosen for that 
study, so there was no standard for comparison. Therefore, Kimball 
et al. (2019) conducted their study using eight seasons of data from 
Ames, Iowa, USA for which eddy covariance measurements of ET were 
available. Like Bassu et al. (2014), they also found simulated ET values 
varied by a factor of two among the maize models. Surprisingly, among 
the models with closest agreement to observations, some were quite 
simple (e.g., no simulation of biomass) and some were quite complex (e. 
g., full energy balance), so it was difficult to determine which ap-
proaches were generally best and should be adopted by the poorer 
performing models. Nevertheless, there were several cases in which 
different ET methods were tested within the same family of crop models, 
and comparisons among these methods clearly revealed some ap-
proaches that were better than others. 

However, there were some issues with the Ames dataset (Kimball 
et al., 2019). For example, in 2012, an infamous year for drought in the 
Midwest, observed ET and crop yield were higher than in other years. 
Further analysis led to the strong suspicion that there was a water table 
present to provide additional water besides the sparse rainfall, yet deep 
soil water measurements were lacking to confirm the suspicion. There-
fore, it was decided to repeat the study of Kimball et al. (2019) with 
more robust datasets. 

Two such datasets were identified, one from the University of 
Nebraska at Mead, Nebraska, USA (41.165◦N, 96.470◦W, 362 m), which 
is close to the 100th meridian typically used to divide the humid East 
from the arid West, thus placing it within the U.S. “corn belt.” There 
were six seasons of maize from irrigated and rainfed fields (12 
treatment-years) with ET determined using eddy covariance. The second 
was collected by the USDA, Agricultural Research Service, Conservation 1 1-520-316-6369 
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and Production Research Laboratory (CPRL), Bushland, Texas, USA 
(35.183◦N, 102.100◦W, 1170 m), which is a more arid region where 
maize is mostly grown with irrigation, and where winds are commonly 
higher. They measured ET using large weighing lysimeters. They grew 
maize for two seasons with MESA (mid-elevation sprinkler application) 
at 100% and 75% replacement of soil water and in near-duplicate SDI 
(sub-surface drip irritation) fields at 100% (8 treatment-years). A total of 
41 models participated in this second round of maize ET simulation 
inter-comparisons (Tables 1, S1), and again the primary objective was to 
identify the approaches that were most accurate for simulating ET, i.e., 
had the lowest RMSE compared to the observations. Besides ET, other 
objectives were to test the models’ abilities to simulate LAI, biomass, 
grain yield, soil moisture, and soil temperature. By “approaches” we 
mean the methods used by the models to simulate ET or other processes, 
i.e., FAO-56 (Allen et al., 1998) versus Priestley-Taylor (1972), etc. 

2. Materials and methods 

2.1. Observed data 

2.1.1. University of Nebraska, Mead, Nebraska, USA 
One set of field data came from the University of Nebraska Agri-

cultural Research and Development Center near Mead, Nebraska, USA 
(http://csp.unl.edu/public/). The soils were deep silty clay loams of 
Yutan (fine-silty, mixed, superactive, mesic Mollic Hapludalfs), Tomek 
(fine, smectitic, mesic Pachic Argialbolls), Filbert (fine, smectitic, mesic 
Vertic Argialbolls), and Filmore (fine, smectitic, mesic Vertic Argial-
bolls). The eddy covariance technique was used to determine ET of 
maize and soybean (Glycine max) in alternate years, as well as fluxes of 
sensible heat and CO2. Additional details can be found in Suyker and 
Verma (2008, 2009) and Suyker et al. (2004, 2005). Briefly, fluxes of 
latent heat, sensible heat, and momentum were determined using data 
from the following sensors at each site: an omnidirectional 3D sonic 
anemometer (Model R3: Gill Instruments Ltd., Lymington, UK) and an 
open-path infrared CO2/H2O gas analyzing system (Model LI7500: 
Li-Cor Inc., Lincoln, NE). 

The instruments were deployed near the centers of the fields, and the 
fetch was about 400 m in all directions. The eddy covariance sensors 
were mounted 5.5 m above the ground. Fluxes were corrected for 
inadequate sensor frequency, and they were also adjusted for the vari-
ation in air density due to the transfer of water vapor and sensible heat. 
Air temperature and relative humidity (Humitter50Y, Vaisala, Helsinki, 
FIN), soil heat flux at 0.06 m (Radiation and Energy Balance Systems, 
Inc., Seattle, WA), and net radiation at 5.5 m (CNR1, Kipp and Zonen 
Ltd., Delft, NLD) were also measured. Missing data due to sensor mal-
function, power outages, unfavorable weather, etc. (approximately 
15–20% per year), were estimated using an approach that combined 
measurement, interpolation, and empirical data synthesis. When hourly 
values were missing (day or night), the latent heat values were estimated 
as a function of available energy. Linear regressions between latent heat 
and available energy were determined (separately for dry and wet 
conditions) for sliding 3-day intervals, and these estimates were used to 
fill in missing flux values. 

To check closure of the energy balance, the sum of latent and sensible 
heat fluxes (λE + H) measured by eddy covariance were plotted against 
the sum of Rn (net radiation) + four storage terms, determined by other 
methods (e.g., Suyker and Verma, 2008). Linear regressions were 
calculated between the hourly values of H + λE and Rn + G at the study 
sites (excluding winter months and periods with rain and irrigation). 
Here G = Gs (soil heat storage) + Gc (canopy heat storage) + Gm (heat 
stored in the mulch) + Gp (energy used in photosynthesis). The regres-
sion slopes averaged 0.89 ± 0.08, implying a fairly good closure of the 
energy balance. 

We used values of daily ET flux, called observed-ET for 2003, 2005, 
2007, 2009, 2011, and 2013 from the US-Ne2 (41.165◦ N, 96.470◦ W, 
362 m; http://ameriflux.lbl.gov/sites/siteinfo/US-Ne2) irrigated maize- 

soybean rotation field and from the US-Ne3 (41.180◦ N, 96.440◦ W, 363 
m; http://ameriflux.lbl.gov/sites/siteinfo/US-Ne3) rainfed maize- 
soybean rotation field. Conservation tillage practices were used, so 
plant residues were not ploughed into the soil, and the soil surface was 
generally partially covered with prior soybean crop residue. Both sites 
are part of the Ameriflux (https://ameriflux.lbl.gov/sites) U.S. surface 
gas flux observation system, and the two sites are within 1.6 km of each 
other. The cultivars were Pn33B51, Pn33G66, Pn33H26, Pn33T57, 
DK_61–72, and DK_62–98 used in 2003, 2005, 2007, 2009, 2011, and 
2013, respectively. The irrigated crops were planted on 14 May, 2 May, 
1 May, 21 April, 17 May, and 30 May, and the rainfed crops on 13 May, 
26 April, 2 May, 22 April, 2 May, and 13 May in 2003, 2005, 2007, 2009, 
2011, and 2013, respectively. Destructive measurements of green leaf 
area index (LAI) and biomass were made approximately bi-monthly 
during the growing season. 

2.1.2. USDA, agricultural research service, conservation and production 
research laboratory, Bushland, Texas, USA 

Maize was grown in 2013 and 2016 at the USDA-ARS Conservation 
and Production Research Laboratory (https://www.ars.usda.gov/plains 
-area/bushland-tx/cprl/), Bushland, Texas (35.18◦ N, 102.10◦ W, 1170 
m above MSL) on a gently sloping (<0.3%) Pullman soil (fine, mixed, 
superactive, thermic Torrertic Paleustoll). Additional details and data 
are provided by Evett et al. (2019, 2020, 2022). Four 4.4 ha fields, 
approximately square in shape and adjacent to each other, each con-
tained a large (3 m × 3 m in surface area, 2.3 m deep) precision weighing 
lysimeter in the center. The lysimeters contained undisturbed cores of 
the Pullman soil obtained on site, and they had an accuracy of 0.04 mm 
water depth equivalent or better (Evett et al., 2012; Marek et al., 1988). 
The fields and their associated lysimeters were designated NE, SE, NW, 
and SW according to the inter-cardinal directions. The NE and SE ly-
simeters and fields were irrigated by subsurface drip irrigation (SDI), 
and the NW and SW lysimeters and fields were irrigated by 
mid-elevation sprinkler application (MESA) using a ten-span line-
ar-move system described by Evett et al. (2019). Adaptation of SDI for 
the NE and SE weighing lysimeters was described by Evett et al. (2018a). 
A 109-day drought-tolerant variety (Pioneer 1151AM AquaMax, ≤80% 
Bt) was planted on 16–17 May 2013 under MESA irrigation, on 22–23 
May 2013 in the SDI fields and on 10–11 May 2016 in all fields. These 
are typical dates for maize planting in the region. Crops were managed 
and fertilized for high grain yield, as detailed by Evett et al. (2019). In 
each field, destructive subsampling for leaf area index and biomass 
occurred in replicate plots periodically during the season, and plant 
height and row width were measured at the same times. Maize harvests 
were on 15 October 2013 and on 13 and 17 October 2016. 

Soil water content was sensed at center depths of 0.10 to 2.30 m in 
0.20 m increments in each of eight access tubes in the field around each 
lysimeter and in two access tubes in each lysimeter (to 1.90 m depth) on 
a weekly basis, unless prevented by wet field conditions, using a field- 
calibrated neutron probe and depth-control stand (Evett et al., 2008). 
Once the crop was established, irrigations were scheduled weekly to 
replenish the soil water in the top 1.5 m of the profile to field capacity (i. 
e., replenishing 100% of crop ET), except for one MESA field where ir-
rigations were 75% of full crop ET after crop establishment. As explained 
by Evett et al. (2019), the MESA 75% deficit irrigation treatment was 
established to complete a previous longer-term deficit irrigation study. 
In some cases, two or even three irrigations were required in a week to 
replenish the water used by the crop. Irrigations by sprinkler and by SDI 
typically did not occur on the same day. Neutron probe readings were 
delayed until the soil surface was dry enough to walk on. The soil profile 
in early 2013 was quite dry, and SDI preplant irrigation and SDI irri-
gation immediately after planting were required to plant and germinate 
the crop. This resulted in a full soil profile in the SDI fields by the time 
neutron probe sensing began, while crop germination with MESA irri-
gation was accomplished with less frequent irrigations that did not 
penetrate to the 1.5 m depth. Irrigations in the 100% SDI and MESA 
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fields maintained the soil water depletion to less than the 
management-allowed depletion level throughout the season. In 2016, 
the soil profile was much wetter following a wet winter, and no preplant 
irrigation and less irrigation immediately after planting were needed. 
Again, irrigations in the 100% SDI and MESA fields kept soil water 
depletion to less than the management-allowed depletion level. 

Evapotranspiration (ET) was determined on 5 min, 15 min, and daily 
bases using data analyses and quality control procedures described by 
Marek et al. (2014) and Evett et al. (2019). Fifteen-minute-average 
weather data were output from the research weather station of the 
USDA-ARS Soil and Water Management Research Unit at Bushland, 
Texas located immediately east of the lysimeter fields. The weather 
station instrumentation and data quality assurance and control pro-
cedures were applied as described by Evett et al. (2018b). 

2.2. Modeling methodology 

2.2.1. Model list 
The simulations were conducted by 20 modeling groups from around 

the world with 41 models completing the inter-comparison (Table 1). 
Details about each model are presented in supplementary Table S1. 
However, as can be seen from the names (Tables 1, S1), in some cases 
there were several “flavors” of different simulation methods tested 
within the same model family that were chosen by the user at run time. 
The biggest example is that of the DSSAT family (Hoogenboom et al., 
2019a,b; Jones et al., 2003) of the Cropping System Model (CSM) within 
which both the CSM-CERES-Maize and CSM-IXIM-Maize (hereafter 
simply called CERES and IXIM) modules were run. Both calculate a value 
called potential evapotranspiration, ETp, which was done using four 
methods: (1) FAO-56 (Allen et al., 1998), (2) Priestley-Taylor (1972), (3) 
the ASCE Standardized Reference Evapotranspiration Equation (R.G. 
Allen et al., 2005) for 12-cm grass (short crop), and (4) the ASCE 
Equation for 50-cm alfalfa (tall crop; Medicago sativa L.) with FAO-56 
dual crop coefficients for maize (Table S1). Within these eight combi-
nations, two E methods for calculating soil water evaporation were 
tested: “Ritchie” (Ritchie, 1972) and “Suleiman” (Suleiman and Ritchie, 
2003, 2004). In addition, within the CERES-FAO-56 and 
CERES-Priestley-Taylor combinations, E was also computed using 
Hydrus (Šimůnek et al., 1998, 2008; Shelia et al., 2018), in which soil 
water moves based on potential gradients. Thus, there were a total of 18 
(2 models x 4 ETp methods x 2 soil E methods + 2 Hydrus) DSSAT fla-
vors. Within the DSSAT flavors, model calibrations though Phase 4 were 
aimed at the best statistics [lowest RMSE, and highest D-statistic (Will-
mont, 1982)] for growth, grain yield, ET, and soil water variables, 
averaged over four ET options (two ET by two E methods) in order to 
minimize bias. The ASCE and Hydrus ET options were not included in 
this process because the methods were not part of the DSSAT V4.7 
release, so they were at a slight disadvantage because they were not 
independently calibrated. Nevertheless, the resulting cultivar co-
efficients were consistently used among all the DSSAT simulations. 

In addition, Expert-N had GECROS and SPASS flavors, STICS had 
KETP and ETP_SW flavors, and MAIZSIM had daily and hourly flavors. 

2.2.2. Simulation protocol 
The study was conducted in four phases:  

1 “Blind phase.” The modelers were sent key input data about soils, 
weather, and management (planting dates, irrigations, fertilizer ap-
plications, etc.) information. They also received anthesis and matu-
rity dates, but no other information about plant growth, grain yield, 
or water use.  

2 “Potential or non-stressed growth phase”. The modelers were sent 
time-series leaf area index (LAI) and biomass observations, as well as 
final grain yields for all the non-water-stress treatments (only irri-
gated for Mead; only 100% irrigation for Bushland)  

3 “Non-stress ET phase”. The modelers were sent all ET, soil water, and 
soil temperature for the non-water-stress treatments (only irrigated 
for Mead; only 100% irrigation for Bushland)  

4 “All phase”. In this final phase, the modelers were provided with all 
LAI, biomass, grain yield, ET, soil moisture, soil temperature etc. 
data for all treatment-years. 

The modelers were told to start their simulations on day-of-year 91, 
so there would be time for equilibration of soil moisture and soil tem-
perature. They were also provided “initial” soil water content profiles, 

Table 1 
List of models and their acronyms. (For details about the evapotranspiration 
aspects of each, see Supplementary Table S1: List of Models Plus Their Simula-
tion Characteristics and Comparisons of Soil Moisture Simulations).  

Acronym Model Name Reference 

AHC Agro-Hydrological & chemical & Crop sys. 
simulator 

(Xu et al., 2018) 

AMSW APSIM-SOILWAT Keating et al., 2003 
AQCP AquaCrop Allen et al., 1998 
AQY Aqyield Constantin et al., 2015 
ARMO ARMOSA Perego et al., 2013 
BIOM Biome-BGCMuSo 6.0.2 Hidy et al., 2016 
CS CropSyst4 Stöckle et al., 2003 
DACT DayCent-CABBI Moore et al., 2020 
DCAR DSSAT CSM-CERES-Maize ASCE-Alfalfa 

Ritchie 
DeJonge and Thorp, 
2017 

DCAS DSSAT CSM-CERES-Maize ASCE-Alfalfa 
Suleiman 

DeJonge and Thorp, 
2017 

DCFH DSSAT CSM-CERES-Maize FAO-56 Hydrus 2018 
DCFR DSSAT CSM-CERES Maize FAO-56 Ritchie Sau et al., 2004 
DCFS DSSAT CSM-CERES-Maize FAO-56 Suleiman Sau et al., 2004 
DCGR DSSAT CSM-CERES-Maize ASCE-Grass 

Ritchie 
DeJonge and Thorp, 
2017 

DCGS DSSAT CSM-CERES-Maize ASCE-Grass 
Suleiman 

DeJonge and Thorp, 
2017 

DCPH DSSAT CSM-CERES-Maize Priestley-Taylor 
Hydrus 

2018 

DCPR DSSAT CSM-CERES-Maize Priestley-Taylor 
Ritchie 

Sau et al., 2004 

DCPS DSSAT CSM-CERES-Maize Priestley-Taylor 
Suleiman 

Sau et al., 2004 

DIAR DSSAT CSM-IXIM-Maize ASCE-Alfalfa 
Ritchie 

DeJonge and Thorp, 
2017 

DIAS DSSAT CSM-IXIM-Maize ASCE-Alfalfa 
Suleiman 

DeJonge and Thorp, 
2017 

DIFR DSSAT CSM-IXIM-Maize FAO-56 Ritchie Sau et al., 2004 
DIFS DSSAT CSM-IXIM-Maize FAO-56 Suleiman Sau et al., 2004 
DIGR DSSAT CSM-IXIM-Maize ASCE-Grass Ritchie DeJonge and Thorp, 

2017 
DIGS DSSAT CSM-IXIM-Maize ASCE-Grass 

Suleiman 
DeJonge and Thorp, 
2017 

DIPR DSSAT CSM-IXIM-Maize Priestley-Taylor 
Ritchie 

Sau et al., 2004 

DIPS DSSAT CSM-IXIM-Maize Priestley-Taylor 
Suleiman 

Sau et al., 2004 

ECOS ecosys Grant and Flanagan, 
2007 

JUL JULES Best et al., 2011 
L5SH L5-SLIM-H Wolf, 2012 
MZD MAIZSIM Daily Yang et al., 2009 
MZH MAIZSIM Hourly Yang et al., 2009 
SLUS SALUS Basso and Ritchie, 

2015 
SLFT SIMPLACE LINTUL5 FAO56 SLIM3 CanopyT Wolf, 2012 
SMET SIMETAW# Mancosu et al., 2016 
SSMi SSM-iCROP Soltani and Sinclair, 

2012 
STCK STICS_KETP Brisson et al., 2003 
STSW STICS_ETP_ SW Brisson et al., 2003 
SWB SWB (Annandale et al., 

1999) 
TMOD Test Model  
XNGM Expert-N - GECROS Priesack et al., 2006 
XNSM Expert-N - SPASS Priesack et al., 2006  
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but the number of days before planting at which soil moisture was 
determined varied widely from season to season. 

2.2.3. Methods for evaluating model performance 
Correlation coefficients (r), D statistics (Willmott, 1982), root mean 

squared errors between observed and simulated values (RMSE), 
normalized root mean squared errors (nRMSE), average differences, as 
well as mean squared deviations (MSD), standard bias (SB), non-unity of 
slopes (NU), and lack of correlations (LC) following Gauch et al. (2003), 
are all presented as Supplementary Statistical Data for Phase 4. Also 
included are slopes and intercepts of regressions of observed on simu-
lated data, along with corresponding graphs for each model and 
analyzed parameter. 

Herein, we chose to present the nRMSE results calculated using: 

nRMSE =
{[

n− 1Σ(Pi − Oi)
2]0.5}

Ō− 1  

where n = number of observations, Pi and Oi are the simulated and 
observed ith value pair, and Ō is the observed mean. Normalizing with Ō 
enables a comparison of the variability of parameters with widely 
different units and scales, such as ET rate and biomass accumulation, 
although admittedly, nRMSE fails for Ō = zero or small values close to 
zero. 

2.2.4. k-means clustering 
A k-means clustering algorithm was used to group models with 

similar nRMSE statistics and identify the top-performing models in a 
non-arbitrary way. Analyses focused on nRMSE for four pairs of model 
output variables, including simulated ET (ETs) versus grain yield and 
biomass from − 10 to +20 days after planting (DAP) (soil E dominant) 
and from 41 to 100 DAP (canopy T dominant). Initial tests varied the 
number of clusters (n) from 1 to 19. The final analysis was conducted 
with n = 4 clusters based on reducing the sum of squared distance from 
the cluster center to less than 20% of that for n = 1 cluster. Using n = 4 
clusters also resulted visually appealing cluster plots with the set of top- 
performing models clearly identified within groups having low nRMSE 
for both variables of each pair. The k-means analysis was conducted 
using the “scikit-learn” package for Python (Pedregosa et al., 2011). 

3. Simulation results and discussion 

3.1. Daily results for irrigated and rainfed Mead in 2003 (the driest year) 
and Bushland 100% and 75% sprinkler irrigations in 2013 (the year with 
highest observed ET rates) 

These four cases were selected from among the twenty treatment- 
years available for more detailed (daily) examination because they 
represent the two sites and the two cases at each site with the likely 
greatest water stress difference between treatments, i.e., irrigated versus 

Fig. 1. (a.) Weather variables (maximum and minimum air 
temperature, dew point, solar radiation, wind speed, rainfall) 
observed at irrigated field NE2 at Mead in 2003 versus days 
after planting (DAP). (b.) Box plots of daily simulated evapo-
transpiration (ETs) where the lower and upper limits of the box 
indicate the 25th and 75th percentile of ET values simulated by 
41 maize growth models, respectively, the lower and upper 
whiskers indicate the 10th and 90th percentiles, and the points 
are outliers. Observed values and the median values from the 
41 models are also shown. The simulated outputs start with 
Phase 2, for which the modellers were given leaf area index, 
growth, and grain yield data for all 100% irrigated treatment- 
years. Phase 1 simulations, a “blind” test whereby the mod-
ellers were only given weather, phenology, management, and 
soils information, are missing from this graph because a plant 
population mistake was made for Mead irrigated fields. (c.) 
Same as (b.) except for Phase 3 whereby the modellers were 
given the observed ET, soil water content, soil temperature for 
all 100% irrigated treatment-years. (d.) Same as (c.) except for 
Phase 4 whereby the modellers were given all data, including 
ET, growth, and grain yield, for all 20 treatment-years, 
including rainfed and 75% irrigations. (e.) Observed daily ET 
values as well as the median ETs values for Phases 2, 3, and 4.   
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rainfed in the driest year at Mead and 100% versus 75% MESA irrigation 
in the year with the highest daily ET rates in Bushland. 

3.1.1. Daily simulated evapotranspiration (ETs) 

3.1.1.1. Irrigated Mead in 2003. As found previously (Kimball et al., 
2019), there was a wide range in ETs among the models (Fig. 1). 
However, the median of all the models tended to be close to the observed 
values most days. Admittedly, for this intercomparison, as well as for all 
the others that follow in the rest of this paper, the median is biased to-
ward DSSAT because of the large number of “flavors.” For this case, the 
observed values fell within the short (1–3 mm/d) green boxes much of 
the time, which indicates many of the models produced respectable 
simulations. There was only a slight (< 1 mm/d) improvement in model 
performance going from Phase 1 to Phase 4. It appears that the greatest 
variability and uncertainty among the models occurred from about 10 
days before planting to 10 DAP (soil E dominated) and from about 130 to 
160 DAP (after the crop matured). A likely cause of the latter issue is that 

many models retained a fair amount of green LAI at and after simulated 
maturity; thus, model equations for ET that depend strongly on LAI did 
not result in sufficient termination of ET. Successive model adjustments 
or calibrations going from Phase 1 to Phase 4 as more information was 
provided only slightly improved this. Model code improvement is 
needed to decrease green LAI due to senescence, eventually shutting 
down T at crop maturity. Code improvement likely is also needed to 
improve the simulation of bare soil ET. 

3.1.1.2. Rainfed Mead in 2003. For rainfed conditions at Mead, the 
models showed large variability (uncertainty) in daily ETs from about 
− 10 to +10 DAP (soil E dominated; Fig. 2) similar to the irrigated field 
(Fig. 1). The greatest deviations (or errors) occurred from about 70 to 95 
DAP when there was little rainfall (Fig. 2a). The observed ET continued 
at close to 4 mm/d, whereas the models simulated much lower rates. 
Like the irrigated field (Fig. 1), after DAP 120 as the crop matured, the 
measured ET decreased rapidly, whereas the models continued to 
simulate much higher ET. The ET variability during the − 10 to +10 DAP 

Fig. 2. Similar to Fig. 1 except for rainfed Mead field NE3 in 2003, and data for Phase 1 are also included.  
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period was related to highly different methods for simulatingE, some of 
which proved to be less accurate. The issues during the maturation 
period after 120 DAP are related to the insufficient termination of T after 
maturity. More importantly, the period from about 70 to 95 DAP and 
beyond corresponds to the period of water limitation, when most models 
(and the median) simulated lower than observed ET. We suspect this is 
caused by inadequate soil water dynamics in the models, such as 
insufficient rooting depth, inadequate water up-flux or the presence of a 
perched water table, as well as excessive simulated ET during the early 
growth phase that depleted the simulated soil water too much, thus 
reducing ET later. 

3.1.1.3. 100% and 75% irrigated Bushland in 2013. For the Bushland 
location, most of the models (and the median) under-estimated ET 
during the 45 to 80 DAP period when windspeeds were high (> 5 m/s) 
and dew points were low (Figs. 3, 4). Model calibration (Phases 1 to 4) 
only partially improved this situation. This is possibly related to the fact 
that many of the models do not adequately account for varying wind 

speed and humidity, as can be deduced from the fact that the models 
estimated ET fairly well during periods of smaller ET but under- 
estimated ET greatly during periods of larger ET, when wind speeds 
were high and relative humidity was low. The fact that solar irradiance 
was also smaller during some of the periods of smaller ET (due to storm 
fronts) indicates that the radiation and energy balance algorithms may 
also need improvement. As before with Mead (Figs. 1, 2), the models 
failed to reduce T sufficiently after crop maturation (Figs. 3, 4; 105 to 
145 DAP). Surprisingly, the models tended to simulate the 75% irriga-
tion treatment (Fig. 4) better than they did the 100% treatment (Fig. 3). 
Again, we speculate that this is because many of the models had not been 
calibrated previously to account for the very high winds and low hu-
midity in Bushland, so their ETs simulations were lower than the high 
observed ET rates for the 100% irrigations treatment (Fig. 3), whereas 
under the 75% treatment (Fig. 4), drought stress reduced observed ET 
rates into the ranges for which the models had been calibrated. The fact 
that observed ET for the 75% MESA irrigations treatment was similar to 
that for the 100% SDI treatment (Evett et al., 2019) indicates that E may 

Fig. 3. Similar to Fig. 1 except for 100% MESA (mid-elevation sprinkler application) irrigation at Bushland in 2013.  
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play an important role in the discrepancies between simulated and 
observed ET for the 100% MESA treatment. The major difference be-
tween SDI and MESA irrigation in the Bushland experiments was the 
larger evaporative losses from the soil surface in MESA irrigated fields 
(Evett et al., 2019). 

3.1.2. Ranking of models with respect to their nRMSE for simulating daily 
ETs 

3.1.2.1. Irrigated mead in 2003. The median of all the models had the 
lowest nRMSE for ETs for Phases 2, 3, and 4 for both early season (− 10 
to +20 DAP; soil E dominant) and mid-season (41 to 100 DAP; canopy T 
dominate) (Fig. 5). For early season STCK was the best model followed 
by several DSSAT “flavors,” and at mid-season several DSSAT flavors 
again did well, especially for Phase 2. STCK uses Penman (1948) to 
calculate atmospheric demand and the 2-phase model of Brisson and 
Perrier (1991) and Brisson et al. (1998, 2003) to calculate soil water 
evaporation, Ea (Table S1). Note that all the DSSAT flavors listed for 

− 10 to +20 DAP end in “R”, which indicates that the soil E method of 
Ritchie (1972) was better than the more recent method of Suleiman and 
Ritchie (2003, 2004). However, for Phase 2 during the 41 to 100 DAP 
period DIFS and DCFS did well, but during this period canopy T was 
dominant, so soil E was relatively unimportant then. 

The effects of changes made by the modelers going from phase to 
phase can also be seen in Fig. 5. For example, BIOM was ranked 19th for 
Phase 2, − 10 to +20 DAP but improved to 5th and 6th for Phase 3 and 
Phase 4, respectively. Like the well-performing DSSAT flavors, BIOM 
also uses Ritchie (1972) to simulate soil E. AHC rose from 28th to 5th 
from Phase 2 to Phase 4 for the − 10 to +20 period. AHC uses the 
two-stage FAO-56 method to simulate E for mostly bare soil (Table S1). 
A huge improvement was made by SLUS going from 40th for Phase 2 to 
5th for Phase 3 for the 41 to 100 DAP period. SLUS calculates atmo-
spheric demand from Priestly and Taylor (1972) and then uses an 
empirical equation to simulate potential ETp (Table S1), which would be 
mostly T for the irrigated full canopy. XNSM, SMET, and CS all markedly 
improved from Phase 2 to Phase 4 to be among the best for the full 

Fig. 4. Similar to Fig. 1 except for 75% irrigation at Bushland in 2013, and data for Phase 1 are also included.  

B.A. Kimball et al.                                                                                                                                                                                                                              



Agricultural and Forest Meteorology 333 (2023) 109396

9

canopy (Fig. 5b). All three use FAO-56 (Allen et al., 1998) with some 
modifications (Table S1). 

3.1.2.2. Rainfed mead in 2003. The STCK model was best for simulating 
ETs for the − 10 to +20 DAP period in the rainfed field at Mead in 2003 
for Phases 1 and 2, while the median was 2nd, and then they traded 
rankings for Phases 3 and 4 (Fig. 6a). ECOS, JUL, DCFR, DIFR, and STSW 
also did very well. ECOS is a full energy balance model while JUL uses 
the Penman-Monteith approach (Monteith, 1965) with a 10-layer can-
opy (Table S1). BIOM rose from 31st for Phase 1 to 3rd for Phases 3 and 
4. JUL and XNGM were best for the 41 to 100 DAP period (Fig. 6b). MZD 
was 3rd for Phase 1, but did much worse in the other phases. DIFR, 
DCFR, and DIPR did well. ECOS rose from 13th for Phase 1 to 2nd for 
Phases 3 and 4. All of these listed models were better than the median for 
this case. 

3.1.2.3. 100% MESA irrigation at Bushland in 2013. The median of all 
the models ranked 1st at simulating ETs from − 10 to +20 DAP for all 
phases in Bushland with 100% MESA irrigation in 2013 (Fig. 7a). Except 
for Phase 2, ECOS, an energy balance model was best. DCFR, DCPR, 
STSW, DIFR, and XNGM all did well. At mid-season (41 to 100 DAP, 
Fig. 7b), CS, DIGR, and STCK did well for all phases. BIOM and DIGS 

improved greatly for phases 3–4. However, the median was only about 
12th. 

3.1.2.4. 75% MESA irrigation at Bushland in 2013. The median of all the 
models was 1st for all but one phase for both early season (− 10 to +20 
DAP) and mid-season (41 to 100 DAP) for the 75% irrigation treatment 
at Bushland in 2013 (Fig. 8). MZH was ranked 2nd for Phase 1, early 
season (Fig. 8a) but then did much worse for other phases. Similarly, 
ARMO did well for Phases 1 and 2, but then did much worse. DCFR, CS, 
and DIPS did well in all phases. XNGM, AMSW, and DCPS were among 
the best for Phase 4. AMSW uses a transpiration efficiency to compute 
ETs from biomass accumulation, XNGM uses a modified Penman- 
Monteith (Monteith (1965), and DCPS uses Priestly and Taylor (1972) 
to simulate potential atmospheric demand and ultimately ETs. 

At mid-season, AQCP and AMSW did well for all phases (Fig. 8b). 
MZH and MZD did well for Phase 1, but then much worse for later 
phases. DIFS, DCFS, SMET, and BIOM did well for Phases 3 and 4. 

3.1.2.5. Intercomparison among the models for all four cases of daily et for 
Phase 4. Looking at Figs. 5-8, no single model appears among the best 
(lowest nRMSE) six for all four cases. The median was among the best for 
the all four cases from − 10 to +20 DAP (mostly E), but only for two cases 

Fig. 5. (a) Normalized root mean squared error (nRMSE) be-
tween observed and simulated daily ET values from − 10 to 
+20 days after planting (DAP)(mostly soil E) for the irrigated 
field NE2 at Mead in 2003 for all the models. Phases 2, 3, and 4 
are identified by red, cyan, and blue bars with Phase 2 at the 
top and Phase 4 at the bottom of each group. Phase 1 data are 
missing from this graph because a plant population mistake 
was made for Mead irrigated fields. The models have been 
sorted in ascending order of nRMSE for Phase 2 from top to 
bottom of the graph with the rank numbers on the left axis 
indicating their ranking for Phase 2. The Median (Med) and 
the six best models (lowest nRMSE) for Phase 2 are listed 
under “Ph2”. Somewhat similarly, the Median and six best 
models for Phases 3 and 4 are also listed under “Ph3” and 
“Ph4”, but because the modelers made different adjustments 
going from phase to phase, their rank order changed, so the 
names along with their nRMSE rank are in different positions 
down the graph. (b) Same as for (a) except the data are for 41 
to 100 DAP (mostly crop canopy T) with the ranking done on 
the 41 to 100 DAP Phase 2 data.   
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from 41 to 100 DAP (mostly T). Focusing on the − 10 to +20 periods 
(mostly E), DCFR was among the best for 3 cases; STCK, DIFR, BIOM, 
ECOS, STSW, SNGM, and AMSW for 2 cases; and DIGR, JUL, TMOD, CS, 
DIPS, DCPS for 1 case. For the 41 to 100 DAP periods, the median was 
among the best only twice. BIOM was best for 3 cases; DIFR, CS, and 
SMET were best for 2 cases; and STCK DIGR, ECOS, JUL, STSW, XNGM, 
DIPR, XNSM, SLUS, DIGS, SLFT, AQCP, AMSW, DIFS, and DCFS were all 
among the best for 1 case. BIOM stands out as being the only model to be 
among the best twice for early season (mostly E) and thrice for mid-
season (mostly T). 

3.2. Inter-comparisons within the DSSAT family 

3.2.1. Daily ETs 
A comparison of E methods within the DSSAT models, revealed that 

the older Ritchie-2-stage model (Ritchie, 1972) was consistently better 
(lower nRMSE and lower simulated ETs) than the Sulieman and Ritchie 
method (2003, 2004) during the − 10 to +20 DAP period, regardless of 
the other ET methods (Figs. 9a, 10a). The Ritchie-2-stage method was 
also better (slightly lower nRMSE) for ETs in the 41 to 100 DAP full 
canopy phase (Figs. 9b, 10b) for two reasons (less E during that phase, 
but mostly because lower early E allowed soil water in deeper layers to 

be conserved for the 41 to 100 DAP period, thus contributing more to T 
during the latter phase). 

In spite of having a theoretically more realistic mechanism for 
moving soil water with potential gradients, the Hydrus method 
(ŠṠŠimůnek et al., 1998, 2008; Shelia et al., 2018) did not perform as 
well as the more empirical Ritchie (1972) and Sulieman and Ritchie 
(2003, 2004) methods (Fig. 9a, 9b). However, Hydrus was just recently 
incorporated into the DSSAT shell, whereas the Ritchie (1972) and the 
Sulieman and Ritchie (2003, 2004) routines have been used for many 
years and likely have been fine-tuned to the system. Also, Hydrus is very 
sensitive to the values of the soil physical and hydraulic properties, so if 
those parameter values were off, the simulated ET would also be off. 

A comparison of potential ET (ETp) methods within the DSSAT 
models illustrated that the FAO-56 method (in present DSSAT; Allen 
et al., 1998) with Kcan of 0.62 (gives Kep = 0.50) performed better 
(lower nRMSE) for ETs than the other ETp methods: Priestley-Taylor 
(P-T; 1972), alfalfa reference-[ETr, ASCE equation (R.G. Allen et al., 
2005)], or grass reference-[ETo, ASCE equation (R.G. Allen et al., 2005)] 
during both the − 10 to +20 DAP period and the 41–100 DAP period 
(Figs. 10a, 10b). Kcan is the extinction coefficient for absorption of 
photosynthetically-active radiation by LAI, while Kep is the extinction 
coefficient for absorption of total solar energy by LAI. The default Kcan 

Fig. 6. (a.) Normalized root mean squared error (nRMSE) 
between observed and simulated daily ET values from − 10 to 
+20 days after planting (DAP)(mostly soil E) for the rainfed 
field NE3 at Mead in 2003 for all the models. Phases 1, 2, 3, 
and 4 are identified by green, red, cyan, and blue bars with 
Phase 1 at the top and Phase 4 at the bottom of each group. 
The models have been sorted in ascending order of nRMSE for 
Phase 1 from top to bottom of the graph with the rank numbers 
on the left axis indicating their ranking for Phase 1. The Me-
dian (Med) and the six best models (lowest nRMSE) for Phase 1 
are listed under “Ph1”. Somewhat similarly, the Median and 
six best models for Phases 2, 3 and 4 are also listed under 
“Ph2”, “Ph3”, and “Ph4”, but because the modelers made 
different adjustments going from phase to phase, their rank 
order changed, so the names along with their nRMSE rank are 
in different positions down the graph. (b.) Same as for (a.) 
except the data are for 41 to 100 DAP (mostly crop canopy T).   
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for CERES is 0.85 (in the ecotype file). Kcan was reduced to 0.62 during 
phase 3, which reduces the effective energy extinction from 0.685 to 
0.50 [latter value supported lysimeter studies of Villalobos and Fereres 
(1990), as well as the theory of foliar absorption of total solar energy 
(Goudriaan, 1977)]. The Kep=0.50 was used for P-T as well. On the 
other hand, the alfalfa reference-FAO-56, or grass reference-FAO-56 are 
dual-coefficient methods that compute their own coefficients during 
incomplete and full canopy phases of ET. In contrast to a previous study 
on cotton (Gossypium hirsutum L.) ET (Thorp et al., 2020), the methods 
based on ASCE alfalfa and grass reference ET did not perform as well as 
DSSAT FAO-56 and P-T; however, the calibration methodology limited 
their comparability in the present study. It appears that the newly 
reduced Kep of 0.50 contributed to improved DSSAT performance, and it 
is an improvement over the default DSSAT value. As mentioned previ-
ously, Sau et al. (2004) reported that the FAO-56 with a Kep=0.50 gave 
the best simulations of ET, soil water extraction, and biomass accumu-
lation with the CROPGRO-Faba bean model for a water-limited envi-
ronment. FAO-56 was better than P-T, and the extinction coefficient 
(Kep=0.50) was better than a higher Kep for either ET method. Simi-
larly, Lopez-Cedron et al. (2008) found the CERES model gave better 
simulations of maize biomass, grain yield, and harvest index under 
water-limited environments, using FAO-56 rather than P-T, and again, 

Kep of 0.50 was better than a higher energy extinction coefficient 
(default in CERES was 0,685). 

There was no significant difference in nRMSE between the CERES or 
IXIM models for the − 10 to +20 DAP period (Fig. 10a, soil E dominant), 
whereas for the 41 to 100 DAP period (Fig. 10b, canopy T dominated), 
IXIM was slightly better, likely because of its more realistic simulation of 
LAI progression. IXIM senesces green leaf area more rapidly (and more 
mechanistically) near maturity than does CERES, which results in less T 
during the grain-filling phase, and which more closely matches the 
observed reduction inT. 

Comparing methods for calculating potential evapotranspiration 
(ETp) on the nRMSE of ETs for the 41 to 100 days after planting (DAP) 
period (Fig. 10b), the FAO-56 method had significantly lower nRMSE. 
For the − 10 to +20 DAP period (Fig. 10a), it was better than both the 
alfalfa (tall; Medicago sativa L.) and grass (short) crop coefficients with 
the ASCE standardized reference equation, but Priestley-Taylor (P-T) 
tended to be almost as good. Comparing soil E methods, Ritchie (1972) 
was much better than Suleiman and Ritchie (2003, 2004) for the − 10 to 
+20 DAP period (Fig. 10a) soil E dominant), and Ritchie (1972) was 
slightly better even for the 41 to 100 DAP period (Fig. 10b, canopy T 
dominant). 

Fig. 7. Like Fig. 6 except for 100% MESA (mid-elevation sprinkler application) irrigation to restore soil water to field capacity at Bushland.  
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3.3. Inter-comparisons within the STICS, Expert-N, and MAIZSIM 
families 

Comparing the nRMSE of daily ETs between the two “flavors” of each 
pair of the STICS, Expert-N, and MAIZSIM families, there were no sig-
nificant differences (Figs. 11a, 11b). STCK uses a single surface model 
(Penman, 1948) to compute potential ETp, whereas STSW handles 
separate canopy and soil surfaces (Shuttleworth and Wallace, 1985), 
Thus, for these four cases, STCK and STSW performed equally well at 
simulating soil E (Fig. 11a) and canopy T (Fig. 11b) in spite of the 
different methods for simulating ETp. Both XNSM and XNGM models use 
Penman-Monteith based approaches for simulating ETp. However, 
XNSM follows FAO 56 guideline based on ETo multiplied with a single 
crop factor to get ETp while in XNGM the required surface- and aero-
dynamic resistances are calculated directly from simulated LAI and 
simulated canopy height. In addition, XNGM follows the more detailed 
Farquhar model in simulating photosynthesis and leaf T but simplifies 
vertical root distribution. The latter could possibly explain slightly 
better soil moisture simulations of XNSM compared to XNGM (data not 
shown). In XNSM, temperature, moisture, and nutrient availability in 
different soil layers are taken into account when simulating rooting 
depth and root length distribution. In contrast, XNGM assumes a 

uniform distribution of root length density within the rooted zone, with 
the increase in rooting depth simply simulated from the increase in root 
biomass, regardless of the soil conditions. Thus, considering that there 
are marked differences between the two models, it is surprising that they 
differ so little in their ability to simulate ETs. The lack of significant 
differences between MZD and MZH is reasonable because they are the 
same in their representation of plant and soil processes. Both models run 
on an hourly time step internally but MZD takes daily weather data as 
input and interpolates them into hourly time steps, while MZH takes 
hourly weather data directly as input. 

3.4. Potential ETp and other sources of variability/error in daily ETs 

There was a wide variability among the models in their simulated 
values for daily ETs as shown in Figs. 1-4, which is similar to the pre-
vious results reported by Kimball et al. (2019). In that report, Fig. 10 
shows that much of the variability can be attributed to variability among 
the models in their values of ETp. Therefore, for this study we requested 
more values of “upstream” variables that the modelers might be using to 
compute ETp, including reference ET based on short (12 cm) grass 
(ETo), reference ET based on tall (50 cm) alfalfa (ETr), soil coefficient 
(Ks), basal crop coefficient (Kcb), soil evaporation coefficient for drying 

Fig. 8. Like Fig. 6 except for the MESA (mid-elevation sprinkler application) 75% irrigation at Bushland.  
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soil (Ke), overall crop coefficient (Kc), potential soil evaporation (Ep), 
potential transpiration (Tp), ETp, and of course, ETs. Three of the 
models did not report ETp, presumably the energy balance ones that do 
not use the concept. 

Focusing on the Phase 2 results from irrigated Mead in 2003, 34 
models reported Ep and 35 models reported Tp, and both Ep and Tp 
were quite variable (data not shown), As expected, the magnitude and 
variability of the soil Ep were greatest for bare soil at the beginning of 
the season. However, there was more than a 2 mm/day spread even at 
mid-season. Surprisingly, a few of the models showed some Tp starting 
on the day of planting before the plants had even emerged. Then, as the 
Tp increased in magnitude as plants grew to full size by mid-season, so 
did the range in variability among them, similar to ETs. 

Thirteen of the models reported ETo and only 4 reported ETr. Pre-
sumably ETo and ETr depend only on weather, yet ETo varied by a factor 
of about 2 at midseason among the 13 models (data not shown). 
Apparently, several different definitions and equations for ETo are in 
play among these models. 

Only 6, 4, 4, and 7 models used Ks, Kcb, Ke, and Kc, respectively. It 
seems likely that more models do use them, but they are computed and 
not routine output, so the modelers would have had to change code to 
get them. In any event, there appear to be several ways that models are 
getting from ETo (or ETr) to ETp that are contributing to the variability 

of ETs. 
Thus, in conclusion, the variability in ETp and ETs appears to be 

coming from steps all along the way starting from the calculations of ETp 
to the final resultant ETs. 

3.5. Cumulative month to whole season ETs results for all 20 treatment- 
years 

The previous sections focused on the daily ET for four selected 
treatment-years. However, one can imagine that an underestimate of 
simulated daily ET one day could save some simulated soil moisture and 
lead to an overestimate the next day. The following sections examine the 
cumulative ET over longer time periods to reveal the extent that the 
errors are also cumulative. 

3.5.1. ETs from − 10 to +20 DAP (mostly soil E) and 41 to 100 DAP 
(mostly canopy T) 

Moving from daily ETs for the four cases (2003 for irrigated and 
rainfed Mead; 2013 MESA at 75% and 100% irrigation at Bushland) to 
cumulative ETs over longer time durations for all 20 treatment-years 
also showed wide variability among the models (Fig. 12). Again, there 
were variations by factors of 2 to more than 4 among them in cumulative 
ETs from − 10 to +20 DAP (mostly soil E) (Fig. 12a). There was little or 

Fig. 9. Normalized root mean square errors (nRMSE) of the 18 “flavors” of 
the DSSAT family models (a) for the − 10 to +20 DAP periods (mostly soil 
E) of daily ETs over all phases for the irrigated and rainfed data for Mead 
2003 and the 100% and 75% MESA irrigated data for Bushland 2013. 
Models included are DSSAT CSM-CERES and DSSAT CSM-IXIM, whose 
horizontal names span the corresponding left ten and right eight vertical 
bars, respectively. Potential ETp calculation methods are using alfalfa (tall, 
ETr) and grass (short, ETo) reference crop coefficients with the ASCE 
standardized reference equation (R.G. Allen et al., 2005), FAO-56 (Allen 
et al., 1998), and Priestley-Taylor (1972). These horizonal names span the 
corresponding bars above them. Soil evaporation calculation methods 
follow Ritchie (1972; labelled “Ritchie”), Suleiman and Ritchie (2003, 
2004; labelled just “Suleiman”), and Hydrus (Šimůnek et al., 1998, 2008; 
Shelia et al., 2018; labelled “Hydrus”). (b) Like (a) except for the 41 to 100 
DAP periods. (c.) The values plotted are averages (+ standard errors) of the 
nRMSEs for Phase 4 for all 20 treatment-years of the cumulative ETs from 
− 10 to +20 DAP periods. (d.) Like (c.) except for the cumulative ETs from 
41 to 100 DAP. (e.) nRMSEs for Phase 4 grain yields for all 20 treatments.   
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no improvement in going from Phase 1 to Phase 4. For Treatments 1–10 
for Mead, the medians of the models were close to the observations, but 
for Treatments 11 and 12, the models generally overestimated ETs. For 
Bushland, most of the models underestimated Treatment 13 when spray 
irrigation wetted the surface and Treatment 18 when rainfall wetted the 
surface of SDI fields. Most models overestimated Treatments 17 and 19 
when the SDI field surface was dry despite plentiful irrigation, but the 
medians were close to observed for the other 4 treatments. These results 
indicate problems simulating E from wetted surfaces and with simulated 
redistribution of water from buried drip lines to the surface (too much 
water movement to the surface). 

Looking at cumulative ETs from 41 to 100 DAP (mostly canopy T), 
there is a range of about a factor of 2 among the models (Fig. 12b), which 
is bad but less than that from the bare soil (Fig. 12a). For Mead, most of 
the models overestimated ETs for Treatments 1–6 and 8–11. They 
underestimated Treatment 7 but were close for Treatment 12. For 
Bushland, most of the models underestimated ETs under sprinkler irri-
gation for Treatments 14–16, which represent wetter soil Ranking the 
models’ ability to simulate cumulative ETs from − 10 to +20 DAP by 
nRMSE (Fig. 13a), the medians were close to observations for Phases 
2–4. SLFT was the best model for Phases 2 and 3 and was next best in 
Phase 4. SLFT uses FAO-56 (Allen et al., 1998) to calculate atmospheric 

demand and then dual crop coefficients simulate ETs (Table S1). For 
Phase 2, models in the DSSAT family were ranked 3–7, and several did 
well in Phases 3 and 4. AMSW was best in Phase 4. CS and XNGM were 
among the best in Phases 3 and 4. 

Similarly ranking their ability to simulate ETs from 41 to 100 DAP 
(Fig. 13b), several of the models in the DSSAT family did well for Phases 
2, 3, and 4. ECOS was among the best for Phases 2 and 3. SSMi (which 
uses Priestly and Taylor (1972) for potential atmospheric demand and 
transpiration efficiency with biomass accumulation to simulate ETs) was 
ranked 6 for Phases 3 and 4, and SMET was ranked 3rd for Phase 4. 
surface conditions, but the medians were close for Treatment 13. Under 
SDI irrigation, most models underestimated Treatment 18, but the me-
dians were close for Treatments 17, 19, and 20. 

Looking back at Section 3.1.2.5, BIOM was among the best at 
simulating daily ETs, yet it was not among the best at simulating ETs 
over the longer intervals. On the other hand, DIFR was almost as good as 
BIOM for simulating daily ETs, and it was best for simulating cumulative 
ETs over the 41 to 100 DAP periods (Fig. 13, Phase 4). Besides DIFR, 
DCFS and SMET were the only other two models that were among the 
best for cumulative ETs over the 41 to 100 DAP periods and also were 
among the best for at least one case of daily ETs. For the − 10 to +20 DAP 
periods, DCFR, XNGM and CS are the only models that were best for 

Fig. 10. Direct comparisons using the same data as for Fig. 9 (excluding Hydrus) between the DSSAT-CERES and DSSAT-IXIM models, among the four potential ET 
methods, and between the two soil water evaporation methods for the corresponding a, b, c, d, and e graphs. The horizontal “Model”, “ETp Method”, and “Soil E” 
labels span the corresponding bars above. 

B.A. Kimball et al.                                                                                                                                                                                                                              



Agricultural and Forest Meteorology 333 (2023) 109396

15

simulating cumulative ETs and also for daily ETs at least for one case. 
Thus, doing well for simulating daily ETs did not guarantee success at 
simulating cumulative ETs. 

3.5.2. Inter-comparisons of cumulative ETs within the DSSAT and other 
model families 

There were wide differences in performance among model “flavors” 
within the DSSAT family for cumulative simulated ETs from − 10 to +20 
DAP (mostly soil E) over the 20 treatment-years (Fig. 9c). Most obvious 
is that the Ritchie (1972) soil E method did much better than the cor-
responding Suleiman (Suleiman and Ritchie, 2003, 2004) method for 
every case. The Hydrus method did comparatively well for this 
cumulative-ETs/20-treatment-year comparison, which is in contrast to 
the daily-ETs/4-treatment-year comparison in Fig. 9a. 

As would be expected, looking at the 41 to 100 DAP periods, the soil 
E method had little effect (Fig. 9d). However, Hydrus, did poorly which 
is in contrast to the − 10 to +20 periods (Fig. 9c). 

There was no significant difference in performance between the 
CERES Maize and IXIM Maize models for the − 10 to +20 DAP periods 
(Fig. 10c), whereas IXIM was slightly better than CERES for the 41 to 
100 DAP periods (Fig. 10d). The better performance of IXIM for full 
canopy conditions was likely because of its more realistic simulation of 
LAI progression, as mentioned previously. Priestley-Taylor was the best 
ETp method for the − 10 to +20 DAP periods (Fig. 10c) but worst for the 
41 to 100 DAP periods (Fig. 10d). FAO-56 was second best for − 10 to 
+20 DAP periods (Fig. 10c) but best for the 41 to 100 DAP periods 
(Fig. 10d). As was obvious from Fig. 9c, the direct comparison between 
Ritchie (1972) and Suleiman and Ritchie (2003) in Fig. 10c, confirms the 
superiority of the older Ritchie (1972) method for simulating soil E, 

likely because the Suleiman and Ritchie overestimates the upward 
movement of soil water from deeper depths. However, under full canopy 
conditions (Fig. 10d), there was no difference between the two soil E 
methods. 

Looking at other models with more than one flavor, STSW performed 
better than STCK for cumulative ETs from − 10 to +20 DAP (Fig. 11c), 
but the reverse was true from 41 to 100 DAP (Fig. 11d). It is somewhat 
surprising that the two-surface method for computing ETp in STSW did 
better for the − 10 to +20 DAP period when there was only the single soil 
surface, but was worse for the 41 to 100 DAP full canopy period. 
However, looking more closely, both models did well for both time 
periods for the Mead data, whereas for Bushland in 2013, both models 
had trouble getting emergence with SDI in 2013, and this issue distorted 
the results. There was no significant difference between XNGM and 
XNSM for either of the time periods (Figs. 11c, 11d). As noted in Section 
3.3, the two models use slightly different variants of the Penman- 
Monteith approach and differing root distribution approaches result-
ing in essentially no differences in daily ETs for the four cases (Figs 11a, 
11b) nor in cumulative ETs for all 20 treatments (Figs. 11c, 11d). MZD 
did slightly better than MZH for the − 10 to +20 DAP periods (Fig. 11c), 
but there was little difference for 41 to 100 DAP (Fig. 11d). Any dif-
ferences between MZD and MZH are likely associated with the differ-
ences between interpolated and measured hourly weather data that 
were driving MZD and MZH, respectively. 

Fig. 11. Direct comparisons using nRMSE between the STCK and STSW 
flavors of the STICS model family, between XNGM and XNSM flavors of 
Expert-N family, and between the MZH and MZD flavors of the MAIZSIM 
model for (a) the − 10 to +20 DAP time period (mostly soil E). The data used 
were all phases for the irrigated and rainfed data for Mead 2003 and the 
100% and 75% MESA irrigated data for Bushland 2013. (b). Like (a) but for 
the 41 to 100 DAP period (mostly canopy T). (c.) Phase 4 of cumulative ETs 
from − 10 to +20 DAP for all 20 treatments. (d) Like (c) but for cumulative 
ETs from 41 to 100 DAP. (e) Phase 4 grain yield for all 20 treatment-years.   
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3.6. Ability of the models in Phase 4 to simulate agronomic parameters 
for all 20 treatment-years – maximum leaf area index, biomass at about 
40 DAP and about 100 DAP, and final grain yield 

3.6.1. Considering all the models 
There was a wide range in simulations of maximum LAI between the 

lowest and the highest models (Fig. 14a). However, for some treatments, 
most of the models agreed closely as indicated by short boxes. Indeed, 
for Treatments 1 and 3, most of the models agreed almost exactly with 
one another and with observations. For many treatments, the medians 
agreed closely with observations. However, for Treatments 4 and 14, the 
models mostly underestimated LAI, whereas for Treatments 11, 15, and 
17, they mostly overestimated LAI. For Bushland, treatments 15, 17, and 
19 were in the 2013 year that began quite dry and required plentiful 
irrigation to achieve germination and to support crop growth. Over-
estimation of LAI may be linked to model algorithms overreacting to the 
plentiful irrigation in an otherwise stressful year. 

Most of the models overestimated above-ground biomass at about 40 
DAP for almost all the treatments (Fig. 14b). This was particularly true 
for the dry 2013 year at Bushland, again indicating that the plentiful 
irrigation caused the models to overestimate biomass accumulation 
despite an otherwise stressful environment. However, by 100 DAP 
(Fig. 14c), most of the models did much better, and agreement with 
observations was much closer. For final grain yield, most of the models 
did surprisingly well (Fig. 14d). For the irrigated Mead data (Treatments 

1–6), most of the models agreed with one another and with the obser-
vations. They also did well for four of the Mead rainfed years, but 
underestimated Treatments 7 and 12. They did less well with the 
Bushland data, especially underestimating the SDI irrigation grain 
yields. The underestimation of SDI grain yields is likely tied to overly 
large partitioning of applied water to soil E, leaving less available water 
for T and grain yield formation. Many models, including DSSAT, lack 
true SDI capability and applied the water to the soil surface in this study. 
Because SDI was more efficient in water use than the MESA irrigation 
method in the actual fields used for this study (Evett et al., 2020) and, 
therefore, likely will be more widely used in the future, the inability to 
handle SDI is an emerging lacuna in many of the models that should be 
addressed in future. 

3.6.2. Inter-comparisons of grain yield within the DSSAT and other model 
families 

DCFS was the best of the several model flavors within the DSSAT 
family to simulate grain yield, as indicated by nRMSE for Phase 4 
(Fig. 9e). However, general patterns are not obvious in Fig. 9e. Never-
theless, some patterns emerge from a direct comparison in Fig. 10e. IXIM 
was slightly better than CERES. FAO-56 emerged as the best ETp method 
followed by Priestly-Taylor and then ASCE standardized reference ET 
equation with grass (short, 12 cm) crop coefficients and then alfalfa 
coefficients (tall, 50 cm) (Fig. 10e), which might be somewhat biased 
because they were not independently calibrated. There was no 

Fig. 12. Box plots for all 20 treatment-years (as defined at the top) of cumulative simulated evapotranspiration (ETs) over (a) the − 10 to +20 days after planting 
(DAP) time period (mostly E) and (b) the 41 to 100 DAP time period (mostly T) for all four phases. The dark lines across the boxes indicate the medians of all the 
models. Also shown are the corresponding observations. Phase 1 is not shown for treatments 1–6 because of a planting density mistake. 
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significant difference in the ability to simulate grain yield between the 
two methods for simulating soil E. 

There was little difference in grain yield simulation ability between 
the two flavors of the STICS model or of the MAIZSIM model (Fig. 11e). 
However, XNSM tended to be better than XNGM, although XNGM uses a 
“more physiological” approach to simulate growth based on the prin-
ciple of functional balance, in contrast to XNSM, in which a more or less 
predetermined scheme is used for partitioning of photosynthates. 

3.7. K-means clusters 

In Figs. 15a and 15c the nRMSE of simulated grain yields for 40 of the 
models (plus their medians) and of simulated biomass accumulation for 
39 of the models (plus their medians), respectively, are compared 
against the nRMSE of the simulated cumulative ETs for the − 10 to +20 
DAP time period (which was mostly Es for these mostly bare soil con-
ditions). These graphs show that for many of the models the relative 
errors for simulating ETs tended to be larger than those for biomass and 
grain yield, which is consistent with the survey of Seidel et al. (2018) 
who found that few modelers calibrate the ET aspects of their models. 
Further, k-means clustering analyses with the number of clusters (k) 
specified to be four, the models were grouped into the four clusters 

illustrated in Figs. 15a and 15c. As can be seen, the k-means program 
identified a cluster of models that did quite well with the nRMSE for 
grain yields and biomass less than about 0.25 and that for ETs less than 
0.35. One of the other clusters did poorly at simulating grain yield and 
biomass, and the other two clusters did progressively worse at simu-
lating ETs. Figs. 15a and 15c suggest that a model’s ability to simulate 
ETs well early in the growing season from − 10 to +20 DAP can carry on 
through the seasons to help simulate biomass and grain yields well too. 

Similarly, Fig. 15b and 15d illustrate the nRMSEs for grain yield and 
biomass against the nRMSE for the cumulative ETs from 41 to 100 DAP, 
when there were mostly full crop canopies. Comparing Fig. 15b with 15a 
and comparing Fig. 15d with 15c, it is apparent that the models were 
better at simulating the cumulative ETs for the full canopies than they 
were for bare soil at the beginning of the growing seasons. Again, k- 
means cluster analyses identified clusters of models that did quite well at 
simulating grain yields, biomass, and full canopy ETs quite well with the 
nRMSE of grain yield, biomass, and ETs all less than about 0.2. It is not 
surprising that there is such a cluster of models that can simulate ETs 
well during midseason which aids them to also simulate biomass and 
grain yields well. 

Table 2 lists the models included in the best-performing clusters in 
Fig. 15. There is overlap among the four categories, but CS, AMSW, 

Fig. 13. (a.) Normalized root mean squared error (nRMSE) 
between observed and simulated cumulative ET values from 
− 10 to +20 days after planting (DAP)(mostly soil E) for all 20 
treatment-years for all the models. Phases 2, 3, and 4 are 
identified by red, cyan, and blue bars with Phase 2 at the top 
and Phase 4 at the bottom of each group. The models have 
been sorted in ascending order of nRMSE for Phase 2 from top 
to bottom of the graph with the rank numbers on the left axis 
indicating their ranking for Phase 2. The Median (Med) and 
the six best models (lowest nRMSE) for Phase 2 are listed 
under “Ph2”. Somewhat similarly, the Median and six best 
models for Phases 3 and 4 are also listed under “Ph3”, and 
“Ph4”, but because the modelers made different adjustments 
going from phase to phase, their rank order changed, so the 
names along with their nRMSE rank are in different positions 
down the graph. Phase 1 is not shown because of the planting 
density error for the six irrigated Maize treatment-years. (b.) 
Same as for (a.) except the data are for 41 to 100 DAP (mostly 
crop canopy T).   
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ECOS, XNSM, and AHC all excelled enough to appear in all four. Simi-
larly performing well enough to appear in all four categories are three 
flavors from the DSSAT family: DIFR, DCFR, and DIGR. Not surprisingly, 
the ensemble median did very well, being first or second in all the cat-
egories, consistent with previous inter-comparisons, e.g., Asseng et al. 
(2015). Among these eight models, CS, XNSM, AHC, DIFR, DCFR, and 
DIGR all use FAO-56 (Allen et al., 1998) to compute ETp (Table S1). ETo 
was used as ETp for DIFR and DCFR, whereas DIGR used crop co-
efficients to adjust ETo to ETp and then various simulated or calculated 
crop or energy extinction coefficients were used to obtain ETs. AMSW 
simulates T using the transpiration efficiency approach and E using 
Ritchie’s (Ritchie, 1972) two-stage method (Probert et al., 1998; Keat-
ing et al., 2003). ECOS simulates ETs from net radiation that is parti-
tioned into latent, sensible, and soil heat fluxes with energy balances on 
the canopy and soil surfaces approach (Grant et al., 2007; Grant and 
Flanagan, 2007). DIGR uses the ASCE Standardized “Short Crop” (12-cm 
grass) ETo (R.G. Allen et al., 2005), which is a successor to FAO-56, with 
maize crop coefficients computed from simulated LAI to adjust ETo to 
ETp. Thus, six of these models have similar core approaches for 

simulating ETs but differ in other ways such as partitioning to leaf area 
or soil moisture movement, etc. AMSW and ECOS are both unique in 
their own ways within this elite group. The three DSSAT models all use 
the Ritchie-two-stage method for soil water evaporation rather than the 
Sulieman method, highlighting the need for E methods with improved 
upward movement of soil water and more accurate E loss in the 
incomplete canopy phase. 

However, something all eight models have in common is that they all 
have been widely used for a long time under a wide range of conditions. 
This includes the lesser-known XNSM because it is a hybrid model with 
elements from both the CERES model (Jones and Kiniry, 1986) and the 
SUCROS model family (van Laar, 1992; Wang and Engel, 2000). AHC is 
also included because it was developed based on a coupling of the 
significantly modified SWAP model (van Dam et al., 1997) and the EPIC 
crop growth model (Williams et al., 1989). Thus, there has been time for 
several generations of modelers to improve these models so that they 
perform well over a wide range of climatic and soil conditions. 

Fig. 14. Box plots for Phase 4 of (a) maximum leaf area index, (b) biomass at about 40 days after planting (DAP), (c) biomass at about 100 DAP, and (d) final grain 
yield for all 20 treatment-years. Also shown are the corresponding observations (triangles). 
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4. Conclusions with discussion  

4.1 Like the previous maize model ET inter-comparison (Kimball 
et al., 2019), again there was wide variability among the models 

in their ability to simulate ET, both on daily and on longer in-
terval bases. The variability generally persisted even as the 
modelers received more information going from one phase to 
another, although a few modelers did make performance 
improvements.  

4.2 Being among the best models at simulating daily ETs did not 
guarantee that a model would be among the best at simulating 
cumulative ETs.  

4.3 Nevertheless, eight models, as well as the ensemble median, were 
identified that did well at simulating (a) cumulative ETs from 
− 10 to +20 DAP (mostly soil E), (b) cumulative ETs from 40 to 
100 DAP (mostly canopy T), (c) biomass accumulation, and (d) 
final grain yield. The models were CS, AMSW, ECOS, XNSM, 
AHC, DIFR, DCFR, and DIGR. Six of them follow the general 
approach of using FAO-56/Penman-Monteith (Allen et al., 1998; 
R.G. 2005) to simulate ETs, while AMSW uses a transpiration 
efficiency approach (Probert et al., 1998; Keating et al., 2003), 
and ECOS uses an energy balance approach (Grant et al., 2007; 
Grant and Flanagan, 2007). All of these models or their ancestors 
have been in existence and have been widely used for a long time. 
Thus, there has been time for improvement over a wide range of 
climatic and soil conditions. Unlike the previous 
inter-comparison (Kimball et al., 2019), none of the simpler 
models were among the best at simulating all four variables for 
this study involving a wider range of environmental conditions 
from two locations.  

4.4 Although the ensemble median was not among the best estimates 
of soil moisture (Supplementary), it was at the top or close to the 
top for all other categories. That the ensemble median generally 
outperforms any individual model is consistent with previous 
intercomparisons, e.g., Asseng et al. (2015).  

4.5 Within the DSSAT family, the older Ritchie (1972) approach for 
simulating soil E was markedly better than the newer Suleiman 

Fig. 15. (a.) K-means clusters of the nRMSE for grain yields 
of 41 models (plus their median) for all 20 treatments versus 
the corresponding ETs for − 10 to +20 DAP (mostly Ea). (b.) 
Same as (a) but for the 41 to 100 DAP periods (mostly Ta). 
(c.) K-means clusters of the nRMSE for biomass accumulation 
of 40 models (plus their median) from 41 to 100 DAP versus 
the corresponding ETs for from − 10 to +20 DAP (mostly Ea). 
(d.) Same as (c) but for the 41 to 100 DAP periods (mostly 
Ts). (Note: one of the 41 models did not simulate grain yield 
and two did not simulate biomass.).   

Table 2 
Lists of models in Fig. 15 identified as being in the K-means clusters of best 
models (lowest nRMSE) for Phase 4 for simulated grain yields and biomass 
versus lowest nRMSE for simulated ETs for − 10 to +20 DAP (mostly bare soil, 
Es) and 41 to 100 DAP (mostly closed canopy, Ts). The models are ranked ac-
cording to their sums of nRMSE for grain yield or biomass plus that for ETs.  

Ranking Yield vs. Es Yield vs. Ts Biomass vs Es Biomass vs Ts 

1 AMSW Med CS Med 
2 Med CS Med CS 
3 CS AMSW DCFS DCFR 
4 XNGM SLFT DIFR SWB 
5 DCFR DCPR DIFS DCFS 
6 DIFR DCFR DCFR DIFR 
7 DCPR DIPR SSMi DIFS 
8 SLFT DIFR AMSW DIGR 
9 DIPR SLUS ECOS MZH 
10 DIGR DIGR DACT AHC 
11 XNSM DCGR XNSM DIGS 
12 ECOS BIOM DIGR DCGS 
13 DCPH XNGM AHC DIAR 
14 BIOM DIAR DIGS SSMi 
15 DCGR XNSM XNGM DCGR 
16 AQCP AQCP  MZD 
17 AHC AHC  AMSW 
18 DIAR ECOS  ECOS 
19 SLUS DCAR  DIAS 
20 DCAR DCRH  AQCP 
21    XNSM 
22    TMOD 
23    DCAS 
24    DCAR  
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and Ritchie (2003, 2004) approach, which appeared to over-
estimate upward movement of soil moisture.  

4.6 Further, within the DSSAT family, the FAO-56 (Allen et al., 1998) 
method for calculating potential ETp was best for simulating ETs 
from 40 to 100 DAP (mostly canopy T) and worse for − 10 to +20 
DAP (mostly soil E). The Priestly and Taylor (1972) method was 
best for soil E and worse for canopy T. The ASCE Standardized 
Equation approach with short or tall crop coefficients (R.G. Allen 
et al., 2005) was intermediate for canopy T and worst for soil E, 
although this result might be somewhat biased because they were 
not independently calibrated.  

4.7 DSSAT CSM-IXIM tended to be slightly better than DSSAT CSM- 
CERES for simulating canopy T, probably because IXIM simu-
lated leaf area progression better.  

4.8 Both STCK (which considers one surface to compute ETp) and 
STSW (which considers both soil and canopy surfaces to compute 
ETp) were among the best models to simulate ETs at the begin-
ning of the seasons, with slightly better results for STSW. During 
the mid-season periods, STCK globally performed better than 
STSW, but both performed poorly with SDI in 2013, which dis-
torted results.  

4.9 XNSM and XNGM appeared to do equally well at simulating both 
soil E and canopy T, with XNGM following the more detailed 
Farquhar modeling approach in calculating photosynthesis and 
leafT, but greatly simplifying vertical root distribution. However, 
XNSM did better than XNGM at simulating grain yield, possibly 
due to its simpler but more robust approach in simulating 
assimilate distribution among plant organs. 

4.9 MZD and MZH both have hourly time steps, yet MZD which uses 
daily weather data did slightly better than MZH which uses hourly 
weather data at simulating soil E, but there was no significant difference 
between them at simulating canopy T. This is somewhat surprising, but 
nevertheless shows that simulated diurnal patterns of hourly weather 
can be as accurate as using the actual hourly observations for input to 
crop growth models with hourly time steps. 
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